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Abstract. We study the decay rate and the CP violating asymmetry of the exclusive B → π�+�− and
B → ρ�+�− decays in the case where one of the final leptons is polarized. We calculate the contributions
coming from the individual polarization states in order to identify a so-called wrong sign decay, which
is a decay with a given polarization, whose width and CP asymmetry are smaller as compared to the
unpolarized one. The results are presented for electrons and tau leptons. We observe that in particular
decay channels, one can identify a wrong sign decay which is more sensitive to new physics beyond the
standard model.

PACS. 13.20.He, 11.30.Er, 13.88.+e

1 Introduction

The rare B decays, which are induced at quark level by
flavor changing neutral currents (FCNC), have received a
lot of attention, since they are very promising for investi-
gating the standard model (SM) and searching for the new
physics beyond it. Among theseB decays, the rare semilep-
tonic ones have played a central role for a long time, since
they offer the most direct methods to determine the weak
mixing angles and Cabibbo–Kobayashi–Maskawa (CKM)
matrix elements. These decays can also be very useful to
test the various new physics scenarios like the two Higgs
doublet models (2HDM), minimal supersymmetric stan-
dard model (MSSM) [1], etc.

On the experimental side, there is an impressive effort to
search forB decays, inB-factories such as Belle, BaBar and
LHC-B.TheCLEOCollaboration reports for the branching
ratios (BR) of theB0 → π−�+ν andB0 → ρ−�+ν decays [2]

BR(B0 → π−�+ν) = (1.8 ± 0.4 ± 0.3 ± 0.2) × 10−4 ,

BR(B0 → ρ−�+ν) = (2.57 ± 0.29+0.33
−0.46 ± 0.41) × 10−4.

(1)

From these results, the value of the CKM matrix element
|Vub| = 3.25 ± 0.14+0.21

−0.29 ± 0.55 has been determined [2].
Recently, the BR of the inclusive B → Xs�

+�− decay has
been also reported by the Belle Collaboration [3];

BR(B → Xs�
+�−) = (6.1 ± 1.4+1.4

−1.1) × 10−6 , (2)

a e-mail: erkol@kvi.nl
b e-mail: wagenaar@kvi.nl
c e-mail: gsevgur@metu.edu.tr

which is very close to the value predicted by the SM [4].
The experimental result from the BaBar Collaboration for
this BR is [5]

BR(B → Xs�
+�−) = (6.3 ± 1.6+1.8

−1.5) × 10−6 . (3)

From the theoretical point of view exclusive channels
are harder to evaluate than inclusive channels, because ex-
clusive channels require additional knowledge of the form
factors, which are used to incorporate hadronic effects.
However, the exclusive channels are easier to measure. The
decay channels that are induced by the b → d�+�− decay at
the quark level are promising for searching CP violation.
For theB decays that are induced by the decay b → s�+�−,
the termswhichdescribe virtual effects as tt̄, cc̄ anduū loops
are in the matrix element proportional to VtbV ∗

ts, VubV
∗
us

and VcbV
∗
cs respectively. Because of the unitary property

of the CKM matrix and because of the fact that VubV ∗
us is

small compared to the other CKM factors, the CP viola-
tion is strongly suppressed in these decays [6,7]. Although
the BR of the B decays induced by b → d�+�− are smaller,
the CKM factors VtbV ∗

td, VubV
∗
ud and VcbV

∗
cd are all of the

same order. Therefore CP violation is much more con-
siderable in these decays [8]. In this context, the exclusive
Bd → (π, ρ, η, η′) �+�−, andBd → γ �+�− decays have been
extensively studied in the SM [9–11] and beyond [12–16].

In [17], it has been observed that the unpolarized CP
asymmetry and decay width for the inclusive b → d�+�−
decay are comparable to the CP asymmetry and decay
width when one of the leptons is in a specific polarization
state. The CP asymmetry as well as the decay rate in the
case of the other polarization state turn out to be smaller
as compared to the unpolarized spectrum and in [17] this
is defined as the wrong sign polarized state. Along this
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line, in [18], a similar analysis of the CP asymmetries in
b → d�+�− decays has been performed in a model indepen-
dent way and it was reported that polarized asymmetries
are very sensitive to various new Wilson coefficients. In this
paper, motivated by the works in [17,18], we make a sim-
ilar analysis of the exclusive B → π�+�− and B → ρ�+�−
channels and calculate the contributions coming from the
individual polarization states in order to identify a wrong
sign decay. This feature can provide measurements involv-
ing a new physics search.

Our paper is organized as follows. In Sect. 2 we present
the effective Hamiltonian and derive the expressions for
the unpolarized and the polarized differential decay rates
of B → π�+�− and B → ρ�+�−. The CP violating asym-
metries for these decays in the unpolarized as well as in
the polarized case are calculated in Sect. 3. The numerical
results and the discussions are presented in Sect. 4, which
is followed by a conclusion section.

2 Exclusive B → π�+�−

and B → ρ�+�− decays

2.1 Effective Hamiltonian

The leading order QCD corrected effective Hamiltonian,
which is induced by the corresponding quark level process
b → d �+�−, is given by [19–22]

Heff =
4GF α√

2
VtbV

∗
td

×
{

10∑
i=1

Ci(µ)Oi(µ)

−λu{C1(µ)[Ou1 (µ) −O1(µ)]

+C2(µ)[Ou2 (µ) −O2(µ)]}
}
, (4)

where

λu =
VubV

∗
ud

VtbV ∗
td

, (5)

using the unitarity of the CKM matrix i.e., VtbV ∗
td+VubV ∗

ud
= −VcbV ∗

cd. The explicit forms of the operators Oi can be
found in [19, 22]. In (4), Ci(µ) are the Wilson coefficients
calculated at a renormalization point µ and their evolution
from the higher scale µ = mW down to the low-energy
scale µ = mb is described by the renormalization group
equation. For Ceff

7 this calculation is performed up to next-
to-next-to-leading logarithmic (NNLL) order in [23–25],
while Ceff

9 and C10 were calculated in [26]. In the context
of the SM NNLL QCD corrections to the BR [26–30] and
the forward–backward asymmetry [31–34] inB → Xs�

+�−
are also available. For a recent review see e.g. [35]. The
corresponding NNLL results for B → Xd�

+�− are given
in [36].

The term that is the source of the CP violation can be
parameterized as follows:

Ceff
9 = ξ1 + λuξ2, (6)

where

ξ1 = C9 + g(m̂c, s)(3C1 + C2 + 3C3 + C4 + 3C5 + C6)

− 1
2
g(m̂d, s)(C3 + C4)

− 1
2
g(m̂b, s)(4C3 + 4C4 + 3C5 + C6)

+
2
9

(3C3 + C4 + 3C5 + C6), (7)

and

ξ2 = [g(m̂c, s) − g(m̂u, s)](3C1 + C2). (8)

In (7) and (8), s = q2/m2
B , where q is the momentum

transfer and m̂q = mq/mb. The functions g(m̂q, s) arise
from one loop contributions of the four-quark operators
O1–O6 and are given by

g(m̂q, s) = − 8
9

ln m̂q +
8
27

+
4
9
y (9)

− 2
9

(2 + y)|1 − y|1/2

×



(
ln

∣∣∣ √
1−y+1√
1−y−1

∣∣∣ − iπ
)
, for y ≡ 4m̂2

q

s < 1

2 arctan 1√
y−1 , for y ≡ 4m̂2

q

s > 1 .

TheCeff
9 termreceives also contributions from long-distance

effects. The cc̄ resonance can be parameterized by means
of a Breit–Wigner shape [37]. It is incorporated in the Ceff

9
term by the following replacement:

g(m̂c, s) (10)

→ g(m̂c, s) − 3π
α2 κ

∑
V=J/ψ,ψ′,...

mV BR(V → �+�−)ΓVtotal
sm2

B −m2
V + imV ΓVtotal

.

To reproduce the correct experimental BR for BR(B →
J/ψX → X��̄) = BR(B → J/ψX)BR(J/ψ → X��̄), the
factor κ is taken to be 2.3 [37].

Neglecting the mass of the d quark, the effective short-
distance Hamiltonian for the b → d�+�− decay in (4) leads
to the QCD corrected matrix element:

M =
GFα

2
√

2π
VtbV

∗
ts

×
{
Ceff

9 (mb) d̄γµ(1 − γ5)b �̄γµ�

+C10(mb) d̄γµ(1 − γ5)b �̄γµγ5� (11)

−2Ceff
7 (mb)

mb

q2
d̄iσµνqν(1 + γ5)b �̄γµ�

}
.
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2.2 The exclusive B → π�+�− decay

In this section we present the expressions for the differen-
tial decay rate of B → π�+�− decay with both unpolarized
and polarized leptons. For this purpose, we need the fol-
lowing matrix elements, which are written in terms of the
form factors:

〈π(pπ)|d̄γµ(1 − γ5)b|B(pB)〉
= f+(q2)(pB + pπ)µ + f−(q2)qµ, (12)

〈π(pπ)|d̄iσµνqν(1 + γ5)b|B(pB)〉
= [q2(pB + pπ)µ − qµ(m2

B −m2
π)]fv(q

2). (13)

Here, pπ and pB are the 4-momenta of the π and the
B meson, respectively. Also f+, f− and fv = − fT

mB+mπ

represent the relevant form factors.
From (11), and using the matrix elements in (12) and

(13), we obtain the amplitude governing the B → π�+�−
decay:

MB→π =
GFα

2
√

2π
VtbV

∗
ts (14)

×{(2Apµπ +Bqµ)�̄γµ�+ (2Gpµπ +Dqµ)�̄γµγ5�},
where

A = Ceff
9 f+ − 2mBC

eff
7 fv,

B = Ceff
9 (f+ + f−) + 2

mB

q2
Ceff

7 fv(m2
B −m2

π − q2),

G = C10f
+, (15)

D = C10(f+ + f−).

Using the matrix element in (14), performing summa-
tion over final lepton polarizations and integrating over
angle variables, the unpolarized differential decay width is
obtained as(

dΓπ

ds

)
0

=
G2

Fα
2

210π5 |VtbVtd∗|2m3
B v

√
λπ ∆π, (16)

where

∆π =
1
3
m2
B λπ(3 − v2)(|A|2 + |G|2)

+16 m2
� rπ |G|2 + 4 m2

� s |D|2
+8 m2

� (1 − rπ − s)Re[GD∗], (17)

with rπ = m2
π/m

2
B , λπ = r2π + (s − 1)2 − 2rπ(s + 1),

v =
√

1 − 4t2
s and t = m�/mB .

In order to calculate the polarized decay spectrum, we
need the final lepton polarizations. For this, one defines
orthogonal unit vectors eL, eT and eN such that in the
rest frame of �− lepton they are written as

SµL ≡ (0, eL) =
(

0,
p1

|p1|
)
,

SµN ≡ (0, eN) =
(

0,
k × p1

|k × p1|
)
,

SµT ≡ (0, eT) =
(
0, e−

N × e−
L

)
. (18)

Here, p1 is the 3-vector of the �− lepton and k is the 3-
vector of the final meson. The longitudinal unit vector SL
is boosted to the CM frame of �+�− by the Lorentz trans-
formation:

SµL,CM =
( |p1|
m�

,
E� p1

m�|p1|
)
, (19)

while ST and SN are not changed by the boost. The dif-
ferential decay rate of the B → π�+�− decay, for any spin
direction n of �−, can be written in the following form:

dΓπ(s,n)
ds

=
1
2

(
dΓπ

ds

)
0
[1 + Pπi ei · n] , (20)

where a sum over i = L,T,N is implied. The polarization
components Pπi in (20) are defined as

Pπi (s) =
dΓπ(n = ei)/ds− dΓπ(n = −ei)/ds
dΓπ(n = ei)/ds+ dΓπ(n = −ei)/ds

. (21)

The resulting expressions for the polarization asymmetries
are obtained as

PπL =
4m2

B

3∆π
v λπ Re[AG∗] ,

PπT =
m2
B√
s∆π

√
λπ π t (22)

× (Re[AD∗]s+ Re[AG∗](1 − rπ − s)) ,

PπN = 0 .

Our results for PπL and PπT agree with the ones given in [38].
As can be seen from the explicit expressions of Pπi , the
polarization PπT is proportional to m� and therefore can be
significant for τ lepton only.

2.3 The exclusive B → ρ�+�− decay

In this section we present the expressions for the differential
decay rate for B → ρ�+�− decay with both unpolarized
and polarized leptons. For this, we need the following ma-
trix elements:

〈ρ(pρ, ε)|d̄γµ(1 − γ5)b|B(pB)〉

= −εµνλσε∗νpλρp
σ
B

2V (q2)
mB +mρ

− iε∗
µ(mB +mρ)A1(q2)

+i(pB + pρ)µ(ε∗q)
A2(q2)
mB +mρ

+iqµ(ε∗q)
2mρ

q2
[A3(q2) −A0(q2)], (23)

〈ρ(pρ, ε)|d̄iσµνqν(1 + γ5)b|B(pB)〉
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= 4εµνλσε∗νpλρq
σT1(q2) (24)

+2i[ε∗
µ(m

2
B −m2

ρ) − (pB + pρ)µ(ε∗q)]T2(q2)

+2i(ε∗q)
(
qµ − (pB + pρ)µ

q2

m2
B −m2

ρ

)
T3(q2),

〈ρ(pρ, ε)|d̄(1 + γ5)b|B(pB)〉 =
−1
mb

2imρ(ε∗q)A0(q2) ,

(25)

where pρ and ε denote the 4-momentum and polarization
vectors of the ρ meson, respectively.

From (23)–(25), we get the following expression for the
matrix element of the B → ρ�+�− decay:

MB→ρ =
GFα

2
√

2π
VtbV

∗
ts

×{
�̄γµ(1 − γ5)�[2Aεµνλσε∗νpλρp

σ
B + iBε∗

µ

−iC(pB + pρ)µ(ε∗q) − iD(ε∗q)qµ]

+�̄γµ(1 + γ5)�[2Eεµνλσε∗νpλρp
σ
B + iFε∗

µ

−iG(ε∗q)(pB + pρ) − iH(ε∗q)qµ]} , (26)

where

A = (Ceff
9 − C10)

V

mB +mρ
+ 4

mb

q2
Ceff

7 T1,

B = (mB +mρ)

×
(

(Ceff
9 − C10)A1 +

4mb

q2
(m2

B −m2
ρ)C

eff
7 T2

)
,

C = (Ceff
9 − C10)

A2

mB +mρ

+4
mb

q2
Ceff

7

(
T2 +

q2

m2
B −m2

ρ

T3

)
,

D = 2(Ceff
9 − C10)

mρ

q2
(A3 −A0) − 4Ceff

7
mb

q2
T3,

E = A(C10 → −C10), (27)

F = B(C10 → −C10),

G = C(C10 → −C10),

H = D(C10 → −C10).

Here A0, A1, A2, A3, V , T1, T2 and T3 are the relevant
form factors.

Using the matrix element in (26), we find the unpolar-
ized differential decay width as(

dΓ ρ

ds

)
0

=
α2G2

FmB

212π5 |VtbV ∗
td|2 v

√
λρ ∆ρ , (28)

where

∆ρ =
8
3
m4
Bλρ

×
[
(m2

Bs−m2
�)

(
|A|2 + |E|2

)
+ 6m2

� Re(AE∗)
]

+24m2
� Re(BF ∗) +

1
rρ
m4
Bm

2
�sλρ |D −H|2

+
2
rρ
m2
Bm

2
�λρ

× (Re[B(−D∗ +G∗ +H∗)]

+ Re[F (C∗ +D∗ −H∗)])

+
1
2
m� Re[(C −G)(D∗ −H∗)]

− 2
rρ
m4
Bm

2
�λρ(2 + 2rρ − s) Re(CG∗))

− 2
3rρs

m2
Bλρ

[
m2
�(2 − 2rρ + s) +m2

Bs(1 − rρ − s)
]

× [Re(BC∗) + Re(FG∗)]

+
1

3rρs
[
2m2

�(λρ − 6rρs) +m2
Bs(λρ + 12rρs)

]
×

(
|B|2 + |F |2

)

+
1

3rρs
m4
Bλρ

× (
m2
Bsλρ +m2

� [2λρ + 3s(2 + 2rρ − s)]
)

×
(
|C|2 + |G|2

)
, (29)

where λρ = r2ρ + (s− 1)2 − 2rρ(s+ 1) and rρ = m2
ρ/m

2
B .

The polarization components are obtained in the same
way as in the previous section. The differential decay rate
of the B → ρ�+�− decay, for any spin direction n of �−,
can be written in the following form:

dΓ ρ(s,n)
ds

=
1
2

(
dΓ ρ

ds

)
0
[1 + P ρi ei · n] , (30)

where a sum over i = L,T,N is implied. The resulting ex-
pressions for the polarization asymmetries are obtained as

P ρL =
−1

3rρ∆ρ
m2
Bv

× (
8m4

Bsrρλρ(|E|2 − |A|2)
−(12rρs+ λρ)(|B|2 − |F |2) +m4

Bλ
2
ρ(|G|2 − |C|2)

−2m2
Bλρ(−1 + rρ + s)Re[CB∗ − FG∗]

)
,

P ρT =
−1

4rρ
√
s∆ρ

mBm�π
√
λρ

× (
m4
Bλρ(rρ − 1)(|C|2 − |G|2)

+m2
Bs(1 + 3rρ − s)Re[CF ∗ −BG∗]

+8rρsm2
BRe[(A+ E)(B∗ + F ∗)]

+m2
B
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×(λρ + (−1 + rρ + s)(rρ − 1))Re[BC∗ − FG∗]

+(−1 + rρ + s)

×(|B|2 − |F |2 + sm2
BRe[(B + F )(H∗ −D∗)])

+m4
BsλρRe[(C +G)(H∗ −D∗)]

)
, (31)

P ρN =
1

4rρ∆ρ
m3
Bm�πv

√
sλρ

× (8Im[EB∗ + FA∗]

−(1 − rρ − s)Im[(B − F )(D∗ −H∗)]

−(1 + 3rρ − s)Im[(B − F )(C∗ −G∗)]

+m2
BλρIm [(C −G) (D∗ −H∗)]

)
.

Our results for P ρL , P ρN and P ρT agree with those given in [39]
for the SM case. As can be seen from the explicit expres-
sions of P ρi , they involve various quadratic combinations
of the Wilson coefficients and hence they are quite sensi-
tive to the new physics. The polarizations P ρN and P ρT are
again proportional to m� as in the B → π�+�− decay and
therefore can be significant for the τ lepton only.

3 CP violation

3.1 CP violating asymmetry in B → π�+�− decay

In B → π�+�− decay with unpolarized final leptons, CP
violating differential decay width asymmetry is defined as

AπCP (s) =
(dΓπ/ds)0 − (dΓ̄π/ds)0
(dΓπ/ds)0 − (dΓ̄π/ds)0

=
∆π − ∆̄π

∆π + ∆̄π
, (32)

where

dΓπ

ds
=

dΓ (B → πe+e−)
ds

,
dΓ̄π

ds
=

dΓ (B̄ → π̄e+e−)
ds

.

In the SM, the Wilson coefficient Ceff
9 is the only one that

contributes toACP above since it has an imaginary compo-
nent as well as a real one, which can be parameterized as in
(6). Therefore, (dΓ̄π/ds)0 and ∆̄π in (32) can be obtained
from (dΓπ/ds)0 and ∆π by making the replacement(

dΓ̄π

ds

)
0

=
(

dΓπ

ds

)
0

|λu→λ∗
u

, ∆̄π = ∆π |λu→λ∗
u
.

(33)

Using (17), (32) and (33), the CP violating asymmetry is
obtained as

ACP (s) =
−2Im[λu]Σπ(s)

∆π + 2Im[λu]Σπ(s)
,

where

Σπ(s) =
1
3
m2
Bλπ(3 − v2) (34)

×
(
f+2Im[ξ∗

1ξ2] − 2mB fvf
+ Im[ξ2Ceff

7
∗
]
)
.

When one of the leptons is polarized in B → π�+�− decay,
the CP violating asymmetry can be defined as follows:

AπCP (s,n) =
dΓπ(s,n)/ds− dΓ̄π(s, n̄ = −n)/ds

(dΓπ/ds)0 + (dΓ̄π/ds)0
, (35)

where

dΓπ(s,n)
ds

=
dΓπ(B → πe+e−(n))

ds
,

dΓ̄π(s, n̄)
ds

=
B → πe+(n̄)e−)

ds
.

Here, n̄ is the spin direction of the �+ in the B̄ → π̄�+�−
decay. From the expression for the polarized differential
decay width for the B → π�+�− decay given by (20), the
width for the corresponding CP conjugated process reads

dΓ̄π(s, n̄)
ds

=
1
2

(
dΓ̄π

ds

)
0

[
1 + P̄πi ēi · n̄

]
. (36)

Since in the CP conserving case P̄πi = −Pπi , in the general
case with the choice ēi = ei, P̄πi can be constructed by
the replacement

P̄πi = −Pπi |λu→λ∗
u
. (37)

Inserting (20) and (36) into (35), and setting n̄ = n, the
CP violating asymmetry when the lepton is polarized, with
n = ±ei, is given by

AπCP (s,n = ±ei)

=
1
2

(dΓπ/ds)0 [1 ± Pπi ] − (Γ̄π/ds)0
[
1 ± P̄πi

]
(dΓπ/ds)0 + (dΓ̄π/ds)0

,

or, by making use of the replacements in (33) and (37) we
further obtain

AπCP (s,n = ±ei)

=
1
2

{
(dΓπ/ds)0 − (dΓ̄π/ds)0
(dΓπ/ds)0 − (dΓ̄π/ds)0

± (dΓπ/ds)0Pπi − ((dΓπ/ds)0Pπi ) |λu→λ∗
u

(dΓπ/ds)0 − (dΓ̄π/ds)0

}

=
1
2

{
AπCP (s) ± δAπ i

CP (s)
}
. (38)

The δAiCP (s) terms in (38) describe the modifications to
the unpolarized decay width, which can be written as

δAπ i
CP (s) =

−2Im[λu]δΣi
π(s)

∆π(s) + 2Im[λu]Σπ(s)
, (39)

where

δΣL
π (s) =

2
3
m2
B v λπ f

+2Im[ξ2C∗
10] , (40)

δΣT
π (s) =

m2
B t π

√
λπ

2
√
s

(41)

×
(
(1 − rπ)f+2 + sf+f−

)
Im[ξ2C∗

10] ,

δΣN
π (s) = 0 . (42)
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3.2 CP violating asymmetry in B → ρ�+�− decay

In B → ρ�+�− decay with unpolarized final leptons, CP
violating differential decay width asymmetry is defined as
in (32) with the replacement ∆π → ∆ρ and dΓπ/ds →
dΓ ρ/ds. Using (29), (32) and (33), the CP violating asym-
metry is given as

AρCP (s) =
−Im[λu]Σρ(s)

2∆ρ + Im[λu]Σρ(s)
, (43)

where

Σρ(s) =
4(s+ 2t)

3rρs(1 + rρ)

×{
mBρIm[ξ2]

× [
A1m

2
Bρ

(
c2m

2
B(−1 + rρ + s)λρ + c1(12rρs+ λρ)

)
+m2

Bλρ

× (
8m2

ρrρsV c3 +A2(c1(−1 + rρ + s) + c2m
2
Bλρ)

)]
−2Im[ξ1ξ∗

2 ]

× [
2A1A2m

2
Bm

2
Bρλρ(−1 + rρ + s)

+A2
1m

4
Bρ(12rρs+ λρ)

+m4
Bλρ(8rρsV

2 +A2
2λρ)

]}
, (44)

with mBρ ≡ mB +mρ and

c1 =
8mbC

eff
7

q2
(m2

B −m2
ρ)T2 ,

c2 = 8
mb

q2
Ceff

7

(
T2 +

q2

m2
B −m2

ρ

T3

)
,

c3 =
8mbC

eff
7

q2
T1 . (45)

When one of the leptons is polarized in B → ρ�+�− decay,
the CP violating asymmetry can be defined as follows:

AρCP (s,n) =
dΓ ρ(s,n)/ds− dΓ̄ ρ(s, n̄ = −n)/ds

(dΓ ρ/ds)0 + (dΓ̄ ρ/ds)0
, (46)

where

dΓ ρ(s,n)
ds

=
dΓ (B → ρ�+�−(n))

ds
,

dΓ̄ ρ(s, n̄)
ds

=
B → ρ�+(n̄)�−)

ds
.

Here, n̄ is the spin direction of the �+ in the B̄ → ρ̄�+�−
decay. From the expression for the polarized differential
decay width in the B → ρ�+�− decay given by (30), the
width for the corresponding CP conjugated process reads

dΓ̄ ρ(s, n̄)
ds

=
1
2

(
dΓ̄ ρ

ds

)
0

[
1 + P̄ ρi ēi · n̄

]
. (47)

Inserting (30) and (47) into (46), and setting n̄ = n,
the CP violating asymmetry when the lepton is polarized,
with n = ±ei, is given by

AρCP (s,n = ±ei)

=
1
2

(dΓ ρ/ds)0 [1 ± P ρi ] − (Γ̄ ρ/ds)0
[
1 ± P̄ ρi

]
(dΓ ρ/ds)0 + (dΓ̄ ρ/ds)0

,

or, by making use of the replacements in (33) and (37) with
π → ρ we further obtain

AρCP (s,n = ±ei)

=
1
2

{
(dΓ ρ/ds)0 − (dΓ̄ ρ/ds)0
(dΓ ρ/ds)0 − (dΓ̄ ρ/ds)0

± (dΓ ρ/ds)0P
ρ
i − ((dΓ ρ/ds)0P

ρ
i ) |λu→λ∗

u

(dΓ ρ/ds)0 − (dΓ̄ ρ/ds)0

}

=
1
2

{
AρCP (s) ± δAρ i

CP (s)
}
. (48)

The δAρ iCP (s) terms in (48) describe the modifications
to the unpolarized decay width, which can be written as

δAρ i
CP (s) =

Imλu δΣi
ρ(s)

∆ρ(s) + ∆̄ρ(s)
, (49)

where

δΣL
ρ (s) =

4mBv

3rρ(1 + √
rρ)

×Im[ξ2]
{
A1m

2
Bρ

× (
c′2m

2
B(−1 + r + s)λρ + c′1(12rρs+ λρ)

)
+m2

Bλρ (50)

× (
8m2

ρrρsV c
′
4 +A2(c′1(−1 + rρ + s) + c′2m

2
Bλρ)

)}
,

δΣT
ρ (s) =

m2
Bm�π

rρ(1 + √
rρ)

√
λρ√
s

×{−A1m
2
BρIm[ξ2]

[
(−1 + rρ + s)c′1/m

2
B

+(−1 + rρ + s)(−1 + rρ)c′2
+s(8rρc3 + (−1 + rρ + s)c′3)]

+Im[ξ2]

× [
8rρsV c1 −A2λρ

(
c′1 +m2

B((rρ − 1)c′2 − sc′3)
)]

− 32mBρrρsA1V Im[ξ1ξ∗
2 ]} , (51)

δΣN
ρ (s) =

m2
Bm�πv

2rρ(1 + √
rρ)

√
λρ

√
sRe[ξ2]

×{
(−A2D1 +A1D2m

2
Bρ)(−1 − 3rρ + s)

−mBρ(−1 + rρ + s)(A1D3mBρ − 2D1T3/mb)

−8rρ(A1c
′
4m

2
Bρ + c′1V )

}
, (52)
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where

c′1 = −2mBρA1C10 , c′2 = −2A2C10/mBρ ,

c′3 = −4T3C10/mb , c′4 = −2V C10/mBρ , (53)

and

D1 = F (Ceff
9 → 0) , D2 = G(Ceff

9 → 0) ,

D3 = H(Ceff
9 → 0) . (54)

4 Numerical results and discussion

In this section we present the numerical analysis of both
the exclusive decays B → π�+�− and B → ρ�+�− for
� = e, τ . We do not present the results for � = µ because
they are similar to the ones for � = e. The input parameters
we used in our numerical analysis are as follows:

mB = 5.28 GeV , mb = 4.8 GeV , mc = 1.4 GeV ,

mτ = 1.78 GeV , me = 0.511 MeV, mµ = 0.106 GeV,

mπ = 0.14 GeV , mρ = 0.77 GeV ,

md = mu = mπ = 0.14 GeV , |Vcb| = 0.044 ,

α−1 = 129 , GF = 1.17 × 10−5 GeV−2 ,

τB = 1.56 × 10−12 s . (55)

Using the Wolfenstein parametrization of the CKM ma-
trix [40], λu in (6) can be written as

λu =
ρ(1 − ρ) − η2 − iη

(1 − ρ)2 + η2 +O(λ2). (56)

Furthermore, we use the relation

|VtbV ∗
td|2

|Vcb|2 = λ2[(1 − ρ)2 + η2] + O(λ4), (57)

where λ = sin θC � 0.221 and adopt the values of the
Wolfenstein parameters as ρ = 0.25 and η = 0.34.

In order to obtain numerical results for theB → π�+�−
and B → ρ�+�− decays, we also need the numerical values
of the decay form factors. The literature on this subject
is very rich; we give some references here. For B → π(ρ)
the form factors are calculated in the constituent quark
model [41] and using the light-cone QCD sum rules [42,43]
( [44,45]). In [46] the results of the lattice QCD calculations
are given for the B → π, ρ form factors, while the pertur-
bative QCD approach [47] and the so-called large-energy
effective theory [48] have also been employed to calculate
these form factors.

4.1 Numerical results
of the exclusive B → π�+�− decay

In order to obtain numerical results for the B → π�+�−
decay, we have made use of the results of the constituent

Table 1. B → π transition form factors in the constituent
quark model

f(0) σ1 σ2

f+ 0.29 0.48
F0 0.29 0.76 0.28
fT 0.28 0.48

�n = +êL

�n = −êL

unpol.

s

10
7

d
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R
(B

→
π
e−
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)/

d
s

10.80.60.40.20
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0.6

0.4

0.2

0

Fig. 1. Polarized and unpolarized differential branching ratios
for B → πe+e− decay

quark model [41], where the form factors fT and f+ can
be parameterized as

f(q2) =
f(0)

(1 − q2/M2)[1 − σ1 q2/M2 + σ2 q4/M4]
. (58)

In this model, f− is redefined as

F0 = f+ +
q2

(pB + pπ)q
f− , (59)

and its interpolation formula is given as

f(q2) =
f(0)

[1 − σ1 q2/M2 + σ2 q4/M4]
. (60)

The parameters f(0), σ1 and σ2 can be found in Table 1.
Note that for f+ and fT a simple monopole two parameter
formula is used, viz. σ2 = 0.

InFig. 1we present our results of the differential branch-
ing ratios (dBR/ds) of the unpolarized and longitudinally
polarized B → πe+e− decay. dBR/ds for the n = −eL po-
larized case is close to the one of unpolarized decay, which
implies that the decay is naturally left handed. dBR/ds for
the n = +eL polarization case is far below dBR/ds for the
unpolarized one. Thus, n = +eL polarized B → πe+e−
decay corresponds to a wrong sign decay.

In Figs. 2 and 3, we plot the longitudinally polarized
asymmetries and the unpolarized CP violating asymmetry
together with −δAL

CP of the B → πe+e− decay, respec-
tively. From Fig. 2 it can be observed that ACP (n = −eL)
is much larger than ACP (n = +eL). It is also observed
from Fig. 3 that −δAL

CP exceeds the unpolarized ACP in
some kinematical regions but is mostly comparable with
it. Particularly, in the region (2m�/mB)2 ≤ s ≤ ((mJ/ψ −
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Fig. 2. Longitudinally polarized CP violating asymmetries for
B → πe+e− decay
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Fig. 3. Unpolarized CP violating asymmetry and longitudi-
nally polarized quantity −δAL

CP for B → πe+e− decay
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Fig. 4. Polarized and unpolarized differential branching ratios
for B → πτ+τ− decay

0.02)/mB)2, which is free of any resonance contribution,
we find that δAL

CP and ACP are about 6%. We see also
from Fig. 3 that in the resonance region δAL

CP can reach
values up to 25%.

In Fig. 4, we present dBR/ds for the decayB → πτ+τ−
for unpolarized, longitudinally and transversely polarized
τ leptons. We observe that dBR/ds for n = −eL and
n = −eT are close to unpolarized dBR/ds, while it be-

−δAL
CP

−δAT
CP

ACP

s
10.90.80.70.60.5

0.25

0.2

0.15

0.1

0.05

0

-0.05

Fig. 5. Unpolarized ACP and −δAi
CP with i = L, T for B →

πτ+τ− decay

comes smaller for n = +eL and n = +eT. The n = +eT
polarization case gives a very small dBR/ds as compared to
the unpolarized decay and thus can be identified as wrong
sign decay.

In Fig. 5, we plot the unpolarized ACP and longitu-
dinally and transversely polarized −δACP of the decay
B → πτ+τ−. We observe that although δAL

CP is small,
δAT

CP is very close to ACP especially in the resonance re-
gions. Therefore, we can conclude that AL

CP (n = +ei) �
AL
CP (n = −ei). The asymmetries reach a maximum value

of 13%.

4.2 Numerical results
of the exclusive B → ρ�+�− decay

In our numerical calculation for B → ρ�+�− decay, we use
a three parameter fit of the light-cone QCD sum rule [44]
which can be written in the following form:

F (q2) =
F (0)

1 − aF q2/m2
B + bF (q2/m2

B)2
, (61)

where the values of the parameters F (0), aF and bF are
given in Table 2. The form factors A0 and A3 can be found
from the following parametrization:

A0 = A3 − T3 q
2

mρmb
,

A3 =
mB +mρ

2mρ
A1 − mB −mρ

2mρ
A2. (62)

In Fig. 6 we present dBR/ds for the decay B → ρe+e−
with unpolarized and longitudinally polarized electrons. It
can be seen from this figure that the polarized spectrum
for n = −eL almost coincides with unpolarized spectrum,
whereas the polarized n = +eL spectrum is far below
the unpolarized one. So, decay is naturally left handed in
the SM.

In Figs. 7 and 8 we plot the longitudinally polarized
CP violating asymmetries, ACP (n) with n = −eL and
n = +eL, and unpolarized ACP together with the polar-
ized quantity δAL

CP for the decayB → ρe+e−, respectively.



G. Erkol et al.: CP violation in polarized B → π�+�− and B → ρ�+�− decays 197

Table 2. B → ρ transition form factors in a three parameter fit

F (0) aF bF

AB→ρ
1 0.26 ± 0.04 0.29 −0.415

AB→ρ
2 0.22 ± 0.03 0.93 −0.092

V B→ρ 0.34 ± 0.05 1.37 0.315
T B→ρ

1 0.15 ± 0.02 1.41 0.361
T B→ρ

2 0.15 ± 0.02 0.28 −0.500
T B→ρ

3 0.10 ± 0.02 1.06 −0.076
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Fig. 6. Polarized and unpolarized differential branching ratios
for B → ρe+e− decay
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Fig. 7. Longitudinally polarized CP violating asymmetries for
B → ρe+e− decay

As can be seen from Fig. 7, ACP (n = −eL) is much larger
thanACP (n = +eL). We see from Fig. 8 that polarizedCP
violating asymmetry δAL

CP becomes larger than its unpo-
larized counterpart in some kinematic regions. Particularly,
in the region (2m�/mB)2 ≤ s ≤ ((mJ/ψ − 0.02)/mB)2,
which is free of resonance contributions, we find that δAL

CP
is about 6%, while the unpolarized ACP is about 4%. We
see also from Fig. 8 that in the resonance region δAL

CP can
reach values up to 25%.

In Fig. 9, we present the dBR/ds for the decay B →
ρτ+τ− for unpolarized, longitudinally, transversely and
normally polarized τ leptons. We see that dBR/ds for n =
+eN and n = −eN almost coincide, while for n = ±eL,
the state with n = −eL is much more comparable with the
unpolarized dBR/dswith respect to the one with n = +eL.
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Fig. 8. Unpolarized CP violating asymmetry and longitudi-
nally polarized quantity −δAL

CP for B → ρe+e− decay
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Fig. 9. Polarized and unpolarized differential branching ratios
for B → ρτ+τ− decay
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Fig. 10. Unpolarized ACP and −δAi
CP with i = L, T, N for

B → ρτ+τ− decay

In Fig. 10, we give longitudinally, transversely and nor-
mally polarized and unpolarized CP violating rate asym-
metries for the decay B → ρτ+τ−. We observe that δAT

CP
and δAN

CP are both smaller than δAL
CP . Therefore, we

can conclude that ACP (n = +ei) � ACP (n = −ei) for
i = T,N, while for i = L ACP (n = +eL) is quite small as
compared to its counterpart with n = −eL.
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5 Conclusion

We have calculated the polarized decay rate and CP vi-
olating asymmetries of the decays B → π�+�− and B →
ρ�+�−. For � = e, which is in the specific polarized channel
n = −eL, the decay rate is comparable to the one of the
unpolarized decay. The normal and the transverse polar-
izations are proportional to the mass of the lepton and
therefore can be significant for the τ lepton only. For the
B → πτ+τ− decay, n = ±eL and for the B → ρτ+τ−
decay n = ±eT and n = ±eN give similar widths. For the
rest, which are defined as the wrong sign decays, the decay
rates and the CP violating asymmetries are much lower
as compared to the unpolarized ones.

In conclusion, we studied the decay rate and the CP
violating asymmetry of the exclusive B → π�+�− and
B → ρ�+�− decays in the case where one of the final
leptons is polarized. Since the SM is naturally left handed,
the wrong sign decays, in particular n = +eL polarized
B → (π, ρ)e+e−, n = +eT polarized B → πτ+τ− and
n = +eL polarized B → ρτ+τ− decays, are more sensitive
to new physics. Taking into account the typical branch-
ing ratios and CP violating asymmetries, 1010–1011 BB̄
pairs are needed for the observation of CP violation in the
exclusive channels [9], which is a challenging task for the
future hadron colliders. An unexpected large asymmetry
in these channels and the wrong sign decays would be very
significant in the search for new physics beyond the SM.
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